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Abstract: 

Lattice models make simplifications to protein structure that form a relatively 
tractably searchable space in which polymers can fold in a quasi-biological manner and 
are thus used in protein folding and protein evolution studies[1].  
Since even with the simplifications of the lattice models the problem of finding the 
energetically optimal conformation of a polymer was proved to be NP-complete many 
types of search algorithms were implemented on this problem including Monte-Carlo 
methods, pruning methods and a variety of evolutionary algorithms. 
Existing search methods represent the structure in ways that differ in the details, but all 
keep the actual conformation and conduct their search on the conformations space. Since 
conformations must be self-avoiding difficulties in moving between acceptable structures 
was reported repeatedly. 

I start by presenting a new approach that samples the conformation space 
indirectly and thus allows easier movement in the search space. This principal can be 
applied in many of the existing search methods.  Later I introduce a series of heuristics 
that limit the search space and apply a simple genetic algorithm to evaluate this 
technique. I will compare it to a similar genetic algorithm that searches directly in the 
conformation space and report the results. 

Future research would include adding a local search algorithm as a second stage 
to try and improve on the final result of the genetic algorithm. The local search approach 
I suggest is a chain-growth based method with a heuristic function that is highly 
dependant on a good starting conformation – a condition we can expect to have at the end 
of the first stage.  
  
 
1) Introduction: 

Proteins can be viewed as microscopic machines that are formed and act in the 
cells of living creatures. One of the basic principals of molecular biology originally 
suggested in the late 1800’s by Emil Fischer suggests that the function of a protein is 
determined by its structure. Proteins are polymers – chains of amino acids that fold into a 
specific structure. Though the composition of a protein is held in a one dimensional chain 
made of an alphabet of 20 characters, its 3 dimensional structure is what gives us the 
information regarding its function. It happens very often that we can identify a proteins’ 
sequence without knowing its structure. The procedure of finding a protein structure 
or/and function is costly and not always possible [2]. Many algorithms attempting to find 
a proteins structure from its sequence have been developed [3] but they are of poor 
quality when it comes to predicting structures of proteins without known homologues 
[3,4]. Many AB-Initio methods for protein folding attempt to fold the protein sequence 
by minimizing an energy function [5]. 



2) The 2D HP lattice model for protein folding: 
Lattice models were first introduced by Dill [6] as a means to study the process of 

protein folding. While the protein chain of amino acids can freely move in space and has 
unlimited amount of possible conformations, lattice models allow the amino acids in the 
chain to be located only at discrete locations on a lattice. This way the search space is 
tractable since the number of possible conformations is finite. The price for this 
simplification is much lesser accuracy and a model that losses much of its power with 
direct biological meaning.  A further simplification of the model is reducing it from 3 
dimensions to 2 dimensions, that is from a cubic lattice to a square lattice. Another 
simplification is reducing the alphabet from 20 symbols representing the 20 amino acids, 
to 2 symbols representing the electrical charge category of the amino acid’s side chain: P 
for polar and H for hydrophobic. The reasoning behind the last simplification is that it is 
believed that the major force playing in protein folding is that of the surrounding polar 
environment (water) repels the hydrophobic residues creating globular proteins with a 
hydrophobic core “hiding” from the surface. 

A 2D HP lattice model is associated with an energy function that is responsible to 
maintain a stable protein structure. Such an energy function should utilize its ability to 
distinguish between only 2 types of letters to favor conformations with a hydrophobic 
core. For this we must introduce the concept of contacts. A contact is defined as any 2 
amino acids on the lattice that are adjacent on the lattice but not directly connected on the 
amino acid chain. The most common such function is one that assigns an energy of –1 to 
all H-H contacts (contacts in which both amino acids are hydrophobic). This function 
favors conformations in which the hydrophobic residues are clustered together. This 
phenomena leads to a hydrophobic core surrounded by polar “surface” residues. Another 
less common energy function includes an additional polar repulsion by setting a positive 
energy of ½ to contacts that are not H-H. This function yields structures that are generally 
less compact. 

For visualization purposes it is common to draw the layout of the chain on the 
lattice with black boxes representing hydrophobic residues and white boxes representing 
polar residues. Figure 1 demonstrates a layout of a chain on a lattice using the common 
energy function. 
 

 

Figure 1. An optimal 2D lattice layout of the 47 amino acids long 
sequence 
PPHPPHHPPHHPPPPPHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH. 
The purple dots represent H-H contacts. Using the common energy 
function this structure yields an energy of –20. Two biological 
phenomena can be viewed in this conformation, a buried 
hydrophobic core and a helix-like secondary structure on the right 
hand side.   

  
 



Though the 2D HP model is not representation for real life protein it got its 
popularity due to its simplicity and that fact that it can represent many important protein-
like attributes such as secondary structure and active sites. It was also shown to 
demonstrate protein like behavior under energy landscape constraints[]. 

A protein is considered to favor the conformation in which it has the minimal 
energy, so for most applications we are mainly interested in finding the lowest energy 
conformation of a given string on a lattice. There is another interesting reverse problem 
of finding the optimal sequence for a given structure, but this is out of the scope of this 
paper. 
 
 
3) Optimization Algorithms:  

Finding the minimum energy conformation of a given string on a square lattice 
was proven to be an NP-complete problem [7]. Since the problem is formulated so 
elegantly and is related to biology, there were many papers written about algorithms for 
finding the best conformation.  

Techniques for solving the 2D HP model can be generally separated into 2 
groups: chain growing and conformation space sampling. While chain growing methods 
attempt to cover the full conformation space, sampling methods attempt to only sample 
promising regions of the conformation space. 

Chain growing methods include full space search [6], pruned searches [13], 
hydrophobic zipper [11] and more [12]. Space sampling algorithms include genetic 
algorithms[8,9], simulated annealing[9] and more [14]. A good summery of previous and 
state of the art search algorithms for the 2D HP problem can be found at [8]. 

One of the first and most important papers written about this problem was a 
comparison between a Monte-Carlo algorithm (simulated annealing) and a genetic 
algorithm [9]. This paper by Ron Unger and John Moult shows how genetic algorithms 
seem to have better performance than simulated annealing on this problem. As far as I 
can tell they were the first to publish a genetic algorithm approach to this problem. They 
also introduced an approach that that is kept to date with all space sampling approaches 
in which the structures are represented as strings holding directional information. So 
instead of dealing with 2 dimensional structures they deal with a 1 dimensional string. 2 
common schemas for structure representation are UPLR and FCA. The first method gives 
absolute directions: Up, Down, Left and Right from the current position. The first amino 
acid can be placed at an arbitrary point. The second method gives directions with respect 
to the current direction in the form of keeping Forward, turning Clockwise or Anti-
clockwise. This facilitates the implementation of regular genetic algorithms since the 
structures are represented as character strings. It was shown [10] that the last 
representation is more advantageous than the first.  

From the abundance of papers attempting to solve this problem via space 
sampling there is one clear problem that arises over and over. The conformation space as 
represented by these strings is disconnected. Furthermore there is an abundance of such 
strings that are not valid since they represent a layout that is not self-avoiding (i.e. the 
chain crosses over itself). This restriction on the sampling space makes the search 
algorithms perform badly. One example from the texts [10] shows how a sequence with 2 
optimal conformations that seem close (similar) to the eye and are close in infeasible 



space are in fact very distant in feasible space (Figure 2). To get from the first to the 
second conformation one must open the conformation, mutate it and close it up again 
which takes many steps. 

 
 
a) 

 

b) 

 

Figure 2. This sequence of 
length 32 has 2 optimal 
conformations with energy  -
15. Though these 
conformations are close in 
infeasible space they are 
distant in feasible space  

     
 

Most older algorithms simply did not accept non self-avoiding conformations, but 
a more common approach today is to allow non self avoiding conformations, but to 
panelize them. This allows the structures to cross conformational barriers as described 
above. 

There is a benchmark on which these algorithms are tested that was introduced in 
[8]. This benchmark has no biological reasoning and was accepted simply because it was 
the first one to be published. A new benchmark is being created today in which sequences 
come from short globular proteins sequences that are “translated” into HP sequences and 
from sequences generated using a Markov chain with globular proteins amino acid 
probabilities. 

Tables 1 and 2 show the benchmark sequences and a comparison of a few of the 
existing algorithms [8,11,12,13]: 
 
# length sequence 
2 20 hphpphhphpphphhpphph 
3 24 hhpphpphpphpphpphpphpphh 
4 25 pphpphhpppphhpppphhpppphh 
5 36 ppphhpphhppppphhhhhhhpphhpppphhpphpp 
6 48 pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh 
7 50 hhphphphphhhhphppphppphpppphppphppphphhhhphphphphh 
8 60 pphhhphhhhhhhhppphhhhhhhhhhphppphhhhhhhhhhhhpppphhhhhhphhphp 
9 64 hhhhhhhhhhhhphphpphhpphhpphpphhpphhpphpphhpphhpphphphhhhhhhhhhhh 

Table 1. The 2D HP benchmark 

 



 
sequence length MC [8] GA [8] CI [11] CG [12] HIT [13] 

  time max time max time max time max time max 
2 20 ? 9 5 9 0 9 2 9 0 9 
3 24 ? 9 6 9 0 9 7 9 0 9 
4 25 ? 8 4 8 0 8 5 8 0 8 
5 36 ? 13 54 14 6 14 132 14 1 14 
6 48 ? 20 ? 22 35 23 378 23 7 23 
7 50 ? 21 3180 21 0 21 18600 21 285 21 
8 60 ? 33 ? 34 60 35 5820 35 85 36 
9 64 ? 35 ? 37 ? 40 546 42 132 39 

Table 2. Comparison of some existing algorithms. ‘max’ is the maximum number of 
contacts of best conformation reached. ‘time’ is the cpu time in seconds, where known as 
reported in the papers. 
 
 
4) Algorithmic design: 

What I present in this paper as a novelty is a technique that can allow space 
sampling algorithms to work with better efficiency. The idea is to reduce the prevalence 
of invalid conformations and yield higher fertility rate in genetic algorithms. My 
technique is also meant to connect the search space in a much better way thus dealing 
with the hardest hurdles of sampling method approaches to this problem. 

The intuition comes from the fact that these structures represented as direction 
strings are very rigid and thus tend to cross over themselves even when there is free space 
for the structure to expand near by. If we could find a structure representation that allows 
the structures to be more flexible we would avoid much of these invalid conformations. 
The gist of the idea is not working with conformations directly at all! Instead I suggest 
working on another structure – matrices. If we can find a function that easily translates 
from matrix space to chain conformation space that also promises us high fertility then 
we are good. 

The function I am suggesting here is a simple follow-the-highest-value approach. 
If all the values in a matrix are different, start by placing the first bead of the chain on the 
highest valued location in the matrix. For the following beads locate the highest valued 
neighboring element and place the bead there. Repeat this process until the chain is 
exhausted or until there are no available neighboring locations. If all the amino acids 
were used this matrix produced an acceptable conformation. If the chain growth 
terminated due to absence of available neighbors than this matrix is considered invalid 
(similarly to a non self avoiding conformation). Since the building of the chain on the 
matrix is dynamic – the chain can grow into any vacant direction – this technique 
intuitively will have a lower percentage of invalid conformations. After a valid 
conformation is built on the matrix we can calculate its energy following any energy 
function we chose. 

Figure 3 is an example of how this matrix-to-conformation function works, while 
figure 4 shows how to calculate an energy function from it. 

 
 



 
a) 
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d) 
 
 
 
 
 
 
 
 

e)                             f)  

    
Figure 3. An example for how the matrix-to-conformation  function works for a string of 
32 beads on a given matrix. Black boxes are locations occupied by the chain. Red boxes 
indicate the highest valued neighbor – the position in which the following bead will be 
placed. Blue represents the other vacant neighbors of the current position of lower value 
than the red one. At (a) we start by locating the highest valued slot in the matrix (#36), 
we select it and follow to its highest valued neighbor (#35) at (b). We continue this way 
(c)-(e) and finally at (f) we have finished placing all 32 beads to get a valid conformation. 
 
 
 
 
 
a) 
 
 
 
 
 
 
 

b) c) 

   
Figure 4. Calculating the energy function for a matrix. After the chain has physically 
been lain on the matrix to create the structure (a) the HP coloring is added according to 
the query string (b) and  the energy is calculated by the desired energy function according 
to the structure (c). 



 
There are a few important attributes that make this matrix to matrix-to-

conformation that make it a good candidate. It is an onto function to the protein space, it 
is highly connected and it easily crosses physical conformational boundaries.  

The first and most important fact is that this function covers all chain 
conformation space. If this was not the case then our search would be limited to the 
conformations in the range of the function which might not include the optimal 
conformation. It is easy to prove that the function is indeed onto the conformation space. 

Claim: for a conformation C of length n, there is a corresponding matrix M such 
that f(M)=X where f is the above matrix-to-structure function.  

Proof by building: For the given conformation X on a lattice for a sequence of 
length n, we start by creating M as a matrix of zeros. At the location of the first bead of 
the conformation X place the value n in the matrix M. Then at the location of the second 
bean place the value n-1 on the matrix. Continue in this fashion placing the value n-i+1 
on the matrix M at the location of the ith bead in conformation X.  

When we use the matrix-to-conformation function we start at the highest value 
location. By the way we built the matrix M we are know that the highest value on it is n, 
and that it is located at the same location of the first bead of X. Of the neighbors of this 
location on M we know by the building that there is a neighbor with the value n-1 at the 
location of the second bead of X. We also know that this is the heist valued unoccupied 
position in M since the value n is occupied and the rest of the values in M are 0 through 
n-1 by the way we built M. So we place the second bead in that location. Inductively, 
after placing bead i on M at a location with value n-i+1 at the corresponding location to 
Xi, we know by the built that it has a neighbor of value n-i. We also know that n-i is the 
highest valued unoccupied location in M since all the values n to n-i+1 are already 
occupied, so of the unoccupied neighbors of bead i this one is the highest valued 
unoccupied location. Thus we continue and place bead i+1 there at the location valued n-
(i+1)+1=n-i. We end at placing the nth (last) bead on the location with value n-n+1=1 on 
M. See figure 5 for an example. 



 
a) 

 

b) 

 

c) 

 
d) 

 

e) 

 

f) 

 
      
Figure 5. An example of the proof for the claim that every conformation has a 
corresponding matrix. Here our goal is to create the conformation from Figure 2a. We 
start with a matrix of zeros M (a). Place the highest value (36) in the location of the 
beginning of the conformation (b). Put a value that’s smaller by one (35) at the location 
of the next bead (c). Continue inserting decreasing values along the path of the 
conformation (d,e) until you reach the final matrix (f) which yields the structure we are 
looking for (see in figure 4 that this matrix indeed corresponds to this structure) 
 

So we showed that every conformation has at least 1 Matrix that yields it but 
clearly this is not the only matrix that corresponds to the given conformation. Take the 
matrix M we built above and add ½ to all of its cells and you will get a different matrix 
that yields the exact same conformation. In fact there is an infinite amount of matrices 
that correspond to every conformation. An open question is whether all conformations 
have equal likelihood to be generated by (random) matrices or is there a bias? My 
intuition says that there has to be a bias since of some sort since the conformational 
representation is unbiased yet the matrix representation favors against non self-avoiding 
conformations. So conformations that are distant from non self-avoiding conformation 
(e.g. a strait line) will be favored against in the matrix representation. 

Since this matrix representation is not bound to conformational constraints it 
crosses physical conformational boundaries much easier than direct conformational 
representations. The fact that the matrix-to-conformation function is not rigid but a 
fluidly grows the chain on it allows it to bypass local obstacles. If we look again at the 
problematic conformations as given in [10] (Figure 2), then with matrix representation a 
single mutation moves us between these 2 structures. Figure 6 shows this example. 



a) 

 

b) 

 

Figure 6. Here we see how 
we can move between the 
structures presented in 
Figure 2 using only a single 
mutation (marked in red) in 
the matrix representation. 
These conformations are 
closer to each other in 
matrix representation than 
in conformation space even 
when non self-avoiding 
conformations are allowed.    

     
 

Though not all conformations are 1 mutation distance apart in matrix 
representation, intuitively it seems that similar looking conformations are close in matrix 
representation space. If instead of looking at single point mutations we allow ourselves to 
look at conformation connectivity through crossovers we can see that the conformation 
space is fully connected under crossovers. If we use a crossover method that takes a 
weighted average of 2 matrices as the crossover product of the matrices, for any 2 given 
M1 and M2 we can build a matrix M3 such that the crossover of M1 and M2 will yield M3 
by using the formula M3 = 2(M2  - ½ M1). Proof by plugging this M3 into the formula for 
the crossover: M2 = ½ (M1 + M3) = ½ (M1 + 2(M2  - ½ M1)) =  ½ (M1 + 2(M2  - ½ M1)) =  
½ (M1 + 2M2  - M1) = ½ (2M2) = M2.  

This method of sampling on the matrix space instead of conformations does have 
drawbacks. Since prior to creating the matrix we can not say to which direction the 
conformation will grow, we might need an n-by-n matrix to represent a conformation for 
a sequence of length n. This can be seen in the extreme case of fully extended chains 
which must have a length of n, since it might be extended horizontally or vertically the 
matrix must be of size n-by-n to be able to accommodate all conformations. This means 
we have to use representations of size n2 which consume greater memory and take greater 
time to mate when using genetic algorithms. In cases where the size of the population is 
similar to the length of the sequence this slows the algorithm considerably.  

An even more alarming problem is that using this representation we are trying to 
optimize a structure of size n2 instead n, which means we have many more parameters to 
optimize, our actual search space increased dramatically and we can expect a need for 
many more generations of any space sampling algorithm in order to converge.  
We will deal with these drawbacks in the next part.    
 
 
5) Heuristics:  

We introduce a heuristic to improve the running time and reduce the search space 
using this matrix representation. Based on the notion that the 2D HP model simulates 
globular proteins behavior in which a hydrophobic core is built, we can stipulate that the 
globular protein like optimal conformations will be relatively compact. When looking at 
optimal structures for sequences from the literature such as [3,8,9,10,13] and more we 



can see that optimal conformations are indeed compact with a width to length ration of no 
more than 2 to 1. That means that all these structures fall within a rectangle whose long 
edge is no more than twice the length of its short edge.  

For a sequence of length n to fall into a rectangle with this ratio, with one edge 
being of length A and the other 2A, we get that n�A*2A=2A2, so for 2A=�2n we get 2A2 
= n. This means that if all optimal structures for sequences of length n fall within a 
rectangle with 2 to 1 ratio, then they fall into a rectangle with the long edge of size �2n. 
We can now claim that any optimal conformation under this assumption will have a �2n 
by �2n matrix that represents it. Such a matrix is of size of �2n * �2n = 2n << n2 and we 
are back to dealing with linear length representation.  

But even if we accept that all optimal confirmations adhere to this assumption this 
heuristic has a drawback. When we reduce the matrix size there is less area for the chain 
to grow on it which will increase the relative number of matrices yielding invalid (non 
self-avoiding) conformations.  

Another heuristic we introduce to limit the search space specifically for genetic 
algorithms is normalizing the matrices such that the sum of all the elements in a matrix is 
1 and all the values are positive. This reduces the full space connectivity mentioned 
before, but practically has very good behavior and promises that matrices won’t dominate 
one the other when using weighted average crossovers.  
 
 
6) Results: 
 To adequately compare the conformation representation space and the matrix 
representation space we used both of the representations in a genetic algorithm. The 
genetic algorithm we implemented was that reported in [3]. A population of size 200 is 
randomly generated. Parents are selected for mating with the probability of parent i with 
conformation ki yielding energy Ei to be chosen being Pi = Ei / �j=1..n Ej. At each 
generation 20 mutations are performed on each member. The probability to accept a 
mutation or a crossover is exp[(Eparents_avg –Echild)/Tk] where Tk  is the temperature at 
generation k. Initial temperature is set on 2 with a decreasing multiplication factor of 0.99 
every generation. 
 Of the many techniques to implement crossovers in matrix representation, we 
chose to take the average of the 2 matrices as the offspring (evenly weighted average). As 
mutation we implemented it by exchanging locations of 2 values in the matrix. For the 
conformation representation we chose the FCA representation that was reported at [10] as 
having greater success (even though the original algorithm as presented by Moult & 
Unger used the UDLR representation). 
 When comparing the algorithms instead of measuring the run time in cpu seconds 
we report only the amount of invalid conformations reached. Since both representations 
are used in the same algorithm, with the same sized population and the same number of 
generations the real time performance difference will be visible through the number of 
invalid conformations reached. Since both representations are run with the same 
algorithm the energy of the final conformation reached is a good performance evaluator 
for the representation.  
 We ran the algorithm using the 2 representations on the sequences from the 
benchmark (see table 1). When using the matrix representation we played with the size of 



the matrix as a parameter. Parameter F represents the size factor of the matrix with 
respect to the sequence length. As noted in section 5 describing the matrix size heuristic 
the matrix has to be of at least size 2n. Larger matrices will have less non self-avoiding 
instances but will have a larger space to optimize over.  
 The results of running the algorithm with the different representations are 
presented in table 3. It is clear that the matrix representation outperforms the 
conformation representation. For F=3 the number of invalid conformations reached (that 
is also equivalent to the running time) is about one size of magnitude smaller than that of 
the conformation representation, while the energy of the optimal conformation is always 
superior when using the matrix representation.  
 

Matrix Conformations       Alg 
Seq F=2 F=3 F=4  

17 17 16 14 Seq 6 
(48) 1.26M * 520K 304K 5.3M 

16 15 14 15 Seq 7 
(50) 754K * 246K 229 5.7M 

28 28 25 23 Seq 8 
(60) 1.50M * 686K 401K 9.4M 

27 26 24 20 Seq 9 
(64) 2.00M * 688K 298K 8.6M 

Table 3. Comparison of performance of the algorithm with the 2 representation methods. 
The matrix representation was tested with size factors F equal 2, 3 and 4. 
   

It is important to note that the algorithm did not find the optimal configuration for 
any of the sequences with any of these sequences. This is due to the algorithm alone. In 
future research it will be interesting trying to use this representation with a better 
performing genetic algorithm or simulated annealing algorithm. 
 
 
7) Discussion: 

These results prove that the new representation is advantageous compared to the 
existing conformation representation technique.  
There is still much room to experiment with the matrix size factor F. There is also room 
to experiment with more crossover techniques such as physical area switching between 
matrices. As mentioned before it should also be interesting to use this representation with 
one of the current state of the art algorithms and see if it improves performance there too.  
It is also easy to implement on the 3D cubic lattice HP model and with other energy 
functions.  

I plan on adding a local search algorithm that uses the conformation found at the 
end of this algorithm as a starting point and using a heuristic for pruning the search tree 
to quickly traverse through the conformation search tree. The principles of this local 
search are presented at [12]. 
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